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Causality in digital medicine

Ben Glocker (an expert in machine learning for medical imaging, Imperial College London), Mirco Musolesi (a data science and

digital health expert, University College London), Jonathan Richens (an expert in diagnostic machine learning models, Babylon

Health) and Caroline Uhler (a computational biology expert, MIT) talked to Nature Communications about their research interests

in causality inference and how this can provide a robust framework for digital medicine studies and their implementation, across

different fields of application.

What is causality and how do causality and digital medicine
interact in your field?

Ben Glocker: Causality is concerned with the modelling of the
underlying cause-effect relationships in the data that we wish
to analyze. Here, the language of causal reasoning allows us to
formalize our knowledge about these relationships and any
assumptions that we make regarding the so called data generating
process which includes aspects of data acquisition, data collection,
and data annotation. A detailed, causal description of the data
generating process can be used to illustrate how the data has been
generated and what factors influence the specific characteristics of
a study sample. For example, using causal diagrams we can
explicitly communicate what factors of variations affect the study
population, the acquisition procedures, the annotation policies, or
the inclusion/exclusion criteria. It is important to model and
communicate the data generating process as this allows us to
identify potential shortcomings, limitations and biases in our data
which may impact the generalizability or even the validity of the
conclusions we draw from statistical data analyses. In the field of
machine learning for medical imaging, we often aim to build
statistical models that take medical scans (and possibly other
information) as inputs in order to make predictions about a
patient’s disease status, the presence of pathology, or the effec-
tiveness of treatment. Here, the underlying causal relationships
between the inputs and outputs can have profound implications
on the types of machine learning strategies we may want to
employ. Further, we may be interested in identifying previously
unknown causal relationships, for example, between imaging
biomarkers and the efficacy of therapeutic interventions.

Mirco Musolesi: Providing a definition is very hard, since in
my opinion, the concept of causality per se is deeply philoso-
phical. T would define causality in very practical terms, also given
my own work and background, and say that causality analysis
allows us to answer cause-effect questions starting from real-
world data. As far as digital medicine is concerned, causality
analysis allows us to operationalise our analytical findings in a
sense, because it literally enables us to use data to make informed
choices. A possible example is the choice of the right therapies

and interventions given the existing conditions and the external
context. In fact, causal analysis allows us to understand the
endogenous and exogenous factors that might have an impact, for
instance, on a certain behaviour or medical outcome. It underpins
our reasoning and it is of fundamental importance for evidence-
based decision making. It is not sufficient to collect data, possibly
in real-time and from a large population using digital technolo-
gies; interpreting the data from a causal point of view is essential
to take informed action. The actual “feedback loop” might
be implemented through the same digital technologies. This
reasoning is true for situations involving individuals, but also for
public health policies and interventions, like those that have been
adopted by governments and local authorities during the current
covid-19 pandemic.

I have been working in the area of real-time monitoring of
physical and mental health using mobile sensing and through the
collection of real-time data (e.g., from social media). I am inter-
ested in applying causal methods to this class of datasets also for
understanding and planning effective feedback systems. Most of
the existing work is based on correlation; as I said, deriving
causality relationships from these datasets is fundamental for
deriving actionable insights.

Jonathan Richens: Many of the routine questions that arise in
clinical practice, such as “what treatment should I recommend?”
or “why is the patient experiencing these symptoms?”, are fun-
damentally questions about cause and effect. Causality is a field of
research that tells us how to answer these types of questions, and
what assumptions and resources are required to do so. For
example, one of the key tasks in digital healthcare is generating
individualised care plans. This involves tailoring a sequence of
decisions to a single patient, steering them towards the desired
health outcomes, which in turn requires estimating the causal
effect that each decision will ultimately have on the patient.
Randomised control trials are the gold standard for establishing
these cause-effect relations, but there are many situations where
randomising these decisions would be unethical, unscalable or
overly disruptive to the patient. So instead we typically have to
work with observational data sets such as electronic health
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records, which only capture associations rather than bona fide
causation. We use causal inference methods to bridge this gap
and answer these causal questions, using observational data along
with modelling assumptions. While this is the most studied
application, causality has deep roots in clinical decision making
that go beyond estimating treatment effects. For example, diag-
nostic reasoning involves generating and testing hypotheses for
the most likely underlying cause of a patient’s symptoms. So even
this textbook clinical decision problem is in fact a causal inference
problem in disguise.

Caroline Uhler: Important questions in the biomedical sci-
ences are inherently causal: which genes regulate one another?
How does an intervention/perturbation (e.g. drug, over-expres-
sion, or knockout) affect the expression of all genes? And which
intervention could move the system from a diseased state back to
the normal state? Causal relationships between nodes, such as
genes, can be represented by a directed network, where a directed
edge from node 1 to node 2 means that node 1 directly regulates
node 2 and thus perturbing node 1 changes the value of node 2.
The biomedical sciences have genetic and chemical tools that
allow perturbational screens on a scale that is unmatched by other
fields. These features make the biomedical sciences uniquely
suited to being not only one of the greatest beneficiaries of
methods in causality, but also one of the greatest sources of
inspiration for the field of causality.

What are the most important concerns related to non-causal
approaches in your field, with respect to clinical and biome-
dical research?

B.G.: One of the most pressing challenges in the field of
medical imaging is dataset shift, which concerns the issue of
(unknown) changes between the development data used for
building predictive models, and the real-world, clinical data we
are facing after deployment. We know that dataset shift can have
detrimental effects on the model performance. Here it is
important to be able to identify the types of shifts, e.g., acqui-
sition shift vs population shift vs annotation shift vs prevalence
shift. Each type of shift requires different mitigation strategies.
Some shifts are harder, some are more straightforward to tackle.
Dataset shift can be well analyzed under the lens of causality as
the types of shift are best described using a detailed, causal
mapping of the data generating process. Dataset shift is also
closely related to the issue of learning spurious correlations,
which occurs when a signal or pattern in the input data is being
picked up during model training that is predictive under the
development data but non-predictive in the real-world test data
after deployment. This can easily happen in imaging settings
where, for example, site specific noise patterns manifest them-
selves in the raw data (caused by specific imaging hardware or
image reconstruction algorithms). Purely associative approaches
are susceptible to spurious correlations, as any signal that will
help to establish a (non-causal) relationship between inputs and
outputs may be learned as long as it helps to optimize the
mathematical objective function. There is risk that this may lead
to false discoveries such as the use of imaging to predict patient
outcomes, while the true relationship may have been based on
confounding factors.

M.M.: In terms of academic studies, the major risk I can see is
related to the reporting of results of studies and their impact on
policy and decision-making in general. Often unwillingly, these
results are communicated to the public without distinguishing
correlation from causation. Let us consider a typical example:
the influence of green spaces on health on physical and mental
wellbeing of people. You can run a correlational study without
taking confounders into consideration. The problem is that

the public and decision-makers might interpret these results in
terms of causal effects, without considering the impact of
important confounders, such as wealth and education levels in
these areas. This is a simple example, but it applies to a variety
of studies with the goal of improving the wellbeing and health of
individuals.

J.R.: Non-causal approaches are totally appropriate for many
tasks; they only become problematic when they are misapplied to
tasks that fundamentally require causal inferences. A common
issue is the use of non-causal methods for tasks that at some level
involve predicting the outcome of interventions. One example of
this is the widespread application of risk prediction algorithms to
population health management, which assumes that patients with
the highest risk will benefit the most from additional care. Clearly
this is a strong assumption, and a more prudent approach is to
assign resources to those who will benefit the most from them—
i.e. using the causal “effect of treatment on the treated” rather
than associative risk predictions. Another example is the use of
user-generated data to validate and optimize digital health pro-
ducts. Confounding and selection biases greatly limit the validity
of any insights derived from this data using non-causal methods.
For example, if I passively observe that using a new digital health
product correlates with a reduction in hospitalization rates, is the
product preventing hospitalizations, or are younger people both
more likely to use the product and less likely to be hospitalized?
One source of optimism is that as digital technologies become
more widely adopted, these causal inference problems become
easier to solve. Digital health platforms can in principle capture
all of the information exchanged between a patient and their care
provider, placing strong limitations on unobserved confounding
between treatment decisions and outcomes, and enabling robust
causal inferences to a much greater degree than standard elec-
tronic health records.

C.U.: Unlike in early drivers of research in machine learning
(ML) and artificial intelligence (AI) such as recommender sys-
tems or online advertising, in the biomedical sciences there are
natural laws to be discovered, phenomena are physically inter-
pretable, and predictive accuracy is often not sufficient, but causal
mechanisms are the ultimate goal. Consider the following
example: While in a recommender system it is sufficient if the
model is able to predict that if someone buys sunscreen, then this
person might also be interested in ice cream. High predictive
accuracy is sufficient and it is not critical to understand the
underlying causal mechanisms. On the other hand, consider a
classical machine learning challenge in the biomedical sciences
such as the ISBI-ISIC Melanoma Classification Challenge, where
the goal is to distinguish benign from malignant skin lesions. We
showed that in the 2017 dataset used for the challenge, neural
networks trained to classify between benign and malignant
lesions would recognize bandages in the benign lesions as features
of malignant skin lesions. These neural networks were thus using
non-causal features for the prediction. This would be highly
concerning for its deployment in medical settings, thereby
demonstrating the need for methods that can identify causal
features in biomedical datasets.

Can you mention one or more examples of digital medicine
studies where causal approaches have been (or would have
been) applied successfully? Especially when compared to a
simpler, associative framework.

B.G.: Recent work that we are particularly excited about is the
development of new machine learning methodology for the
generation of so called counterfactual images. There are a few
groups working on the idea of incorporating causality into deep
generative models in order to be able to synthesize realistic,
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subject-specific hypothetical images. For example, we can already
reasonably well predict how a brain scan of a specific individual
may look like if that person were 10 years younger or older. This
requires approaches that go beyond association in order to pre-
dict the effect of particular interventions to the causal model
relating an individual’s characteristics (e.g., their age, biological
sex, etc.) to the anatomical manifestation of the brain visible in a
medical scan. Such interventions require mathematical tools of
causal reasoning, such as our recently proposed deep structural
causal models. As a next step, we want to extend this work to
study subject-specific effects of diseases, such as Alzheimer’s.
Here, the generated counterfactual images could be used to
answer questions like “how would this individual’s brain look like
if they were healthy?”. This is different from today’s population-
based analyses which mostly look for the average effect of a
disease across the patient population. Another area where
counterfactual images could be useful is to aide with the
explainability of image-based machine learning methods. For
example, the generated images could highlight anatomical chan-
ges that are deemed important for a specific prediction. Images
are a natural and human-interpretable way of conveying
information.

M.M.: I believe that one of the most interesting examples is the
quantification of the effects of behavioural interventions. In terms
of practical methods, I would say that researchers will benefit
from analysis based on causality methods. Let us consider an
example. Let us suppose that you want to design a study about
strategies for improving physical and mental wellbeing using a
mobile app. The app itself in terms of timing and content of
notifications should be designed in such a way to allow for
example random control trials. Analysing only the correlation
between changes in behaviour without taking into consideration
treatment and control groups according to a causal lens will be
very limiting: it will not allow for quantifying the impact of dif-
ferent interventions, such as different types of messages sent in
different contexts, time of the day, etc.

J.R.: One famous example where causal approaches could
have been applied is a study from the University of Pittsburgh
and Carnegie Mellon, which trained several machine learning
algorithms to predict mortality risk and use this to triage
pneumonia patients. Surprisingly, the algorithms learned to treat
asthma as a protective factor against mortality—a dangerous
conclusion that could result in less aggressive treatments, despite
asthma in fact representing an increased mortality risk. This
mistake was not due to algorithmic error; the training data really
did appear to show a lower mortality risk for asthmatic patients
due to a path-specific causal effect. Asthmatics had historically
received more aggressive treatments than non-asthmatics,
resulting in an overall reduction in mortality rate. Instead, this
error derives from confusing a causal task, identifying the best
intervention for a patient, with an associative task, predicting the
patient’s risk. Recently, causal algorithms have been proposed
that can avoid these pitfalls. For example, diagnostic algorithms
have historically confused a causal task, identifying the most
likely underlying cause of a patient’s symptoms, with an asso-
ciative task, predicting the likelihood of a disease. As a result,
these associative algorithms can make mistakes that violate
common sense principles, like suggesting diseases that could not
possibly cause a patient’s symptoms. On the other hand, causal
diagnostic algorithms can avoid these mistakes and achieve sig-
nificantly better performance.

C.U.: When the COVID-19 pandemic struck in early 2020,
doctors and researchers rushed to find effective treatments. While
drug discovery is still mostly done experimentally, computational
methods are starting to be used and have already led to successful
drugs. A popular approach is based on network analysis. An

important resource for this is the protein-protein interaction
database. By overlaying this network with information on the
nodes of how differentially expressed a gene is in the diseased
state as compared to the normal state, nodes can be found that
are either very central to, or connected to, many nodes that are
differentially expressed by the disease. These central nodes in the
disease interactome are candidates for drug targets.

A protein-protein interaction network is an undirected net-
work that does not capture any regulatory or causal relation-
ships. While popular network-based approaches screen for
drugs that target nodes that are connected to many nodes that
are affected by a disease, if these target nodes are downstream
of nodes affected by a disease, the drug will have no effect on
the disease nodes. It is thus critical to infer a causal network to
identify which genes and proteins are “upstream” (i.e. they have
cascading effects on the expression of other genes) and which
are “downstream” (i.e. their expression is altered by prior
changes in the network). An ideal drug candidate would target
the genes upstream of the genes that are differentially expressed
by the disease. By using causal structure discovery algorithms to
turn the undirected protein-protein interaction network into a
directed network, in recent work we identified the protein
RIPK1 as a promising target for COVID-19 drugs. Interestingly,
it has been shown that RIPK1 directly binds to SARS-CoV-2
proteins, and a RIPK1 inhibitor is currently in clinical trials for
COVID-19.

What are the biggest obstacles preventing wider application
of causality approaches, from your perspective?

B.G.: Applying causal reasoning requires certain assumptions
to be made about the underlying relationships in our data, and
many of those assumptions will remain untestable. A key criti-
cism of causal approaches relates to the issue of unknown con-
founding, meaning we often cannot be certain that there are no
other factors that explain the effects we see in our (observational)
data. Making appropriate assumptions requires domain expertise,
so the field of causal reasoning naturally requires a multi-
disciplinary approach.

M.M.: One of the major issues is related to the way education
and training in quantitative and statistical methods are currently
structured. Causal methods are not routinely taught in secondary
schools and University courses, except perhaps in core Statistics,
Epidemiology, and possibly in certain areas of Social Sciences
(Economics and Political Science come to mind), at least at
Undergraduate level. There are a variety of factors that are
associated with the current landscapes, including the fact that the
number of modules allocated to statistical methods is usually
quite limited - often students take only 1 Statistics module in their
degree. Non-causal approaches are not trivial per se for students
not trained in statistical methods. I believe that the situation
might be improved if Statistics and Data Science training could
start earlier, ideally in secondary school.

Causal inference methods are also not mainstream in certain
communities in Computer Science either and, for this reason, it is
not common to see applications of these techniques outside
Machine Learning and related disciplines. I personally experi-
enced situations where the reviewers of my papers in which we
applied causal reasoning did not appear completely comfortable
with the experimental setting and analysis so that it was difficult
for them to champion the paper for publication.

Other obstacles are related to the fact that, in order to be
able to perform a causal analysis of the data, it is necessary to
collect information about a potentially large population and for
a long period of time. This is often practically hard, for example
when the data are collected using mobile applications. In fact,
it might be difficult to ensure compliance by keeping a large
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number of users involved in a study for a considerable amount
of time.

J.R.: While machine learning can be a powerful tool in
medicine, it can also be a procrustean bed. There is an
understandable desire to apply the latest machine learning
methods to medical problems, but most of these methods are
limited to making associative inferences. This tendency to try
and fit the problem to the tool has been an issue throughout the
history of AI in medicine, and while the classic medical text-
books clearly emphasize the importance of causal reasoning,
this has often been ignored in the AT community. However, this
state of affairs is rapidly changing. Recent years have seen the
application of more advanced regression and representation
learning techniques to causal effect estimation, which has done
much to bridge this gap between causality and modern machine
learning methods. Still, these causal methods require additional
domain knowledge and validation compared to non-causal
methods, which acts as a further barrier to entry. Likewise, a
lack of knowledge of causality has limited the uptake of causal
methods in applied research. But this is also rapidly changing,
with both large and medium size tech companies now investing
heavily in causal research.

C.U.: The main difficulty in biomedical applications is that one
cannot assume that the underlying causal network is known. The
causal mechanisms are often exactly what researchers are after. It
is well-known that from observational data alone, i.e. data col-
lected in a passive fashion by observing a system rather than
acting on it, one can only partially identify the underlying causal
network, and even this only under strong assumptions. A full
understanding of the causal relationships in a system requires
interventional data that is obtained by deliberately and carefully
altering one or more components of the system.

Unlike most other disciplines, the biomedical sciences have
chemical (e.g. drugs) as well as genetic (e.g. knock-out, knock-
down, over-expression) tools to deliberately alter components of
the system, as well as technologies such as single-cell RNA-seq or
imaging to obtain high-throughput observational and interven-
tional data. This has resulted in large-scale perturbational datasets
including CMAP, DepMap and Cell Painting with sequencing or
imaging readouts of single drug or gene perturbations. While
perturb-seq and optical pooled screens allow for combinatorial
perturbations (i.e. the perturbation of multiple genes at once),
large-scale combinatorial perturbation screens are not yet readily
available and would be critical for motivating new causal methods
as well as validating current causal structure discovery methods.

Together with new datasets, the field also needs a theoretical
and algorithmic framework for causal inference based on inter-
ventional data. In particular, even if large-scale combinatorial
perturbation screens become readily available, it will be infeasible
to perform all combinations of perturbations. Data acquisition
and causal inference methods thus will have to go hand-in-hand
in order to identify the most informative perturbations, ideally in
an iterative fashion using an active learning approach. In addi-
tion, the ability to perform large-scale interventions not only
provides a toolkit for learning the causal structures underlying
biological phenomena, it also provides a strategy for controlling
them. While control theory and causality have had few interac-
tions thus far, when taking an intervention-centric approach to
causality, it is natural to consider control theory given its focus on
identifying the best actions to control a system or move it towards
a desired state.

Together with Anthony Philippakis I co-direct the newly-
launched Eric and Wendy Schmidt Center (EWSC) at the Broad
Institute, which aims at understanding the programs of life.

Recognizing the importance of causal inference for such an
undertaking, causality is a central theme of the center. A key
goal of the EWSC is to not only bring the tools of modern ML
into the biomedical sciences, but to also make the biomedical
sciences a key driver of foundational advances in ML. Impor-
tantly, this includes identifying and generating key biological
datasets that are critical for advancing developments in causal
inference that can then feedback to biological discovery.

Can you give us a quick walkthrough on how causal
approaches can be implemented in a digital medicine study in
your field, starting from data collection?

B.G.: Assuming the goal is to build a predictive model, a first
question to ask could be about the causal relationship of the
input data and target predictions. What do we know or what do
we assume about the causes and effects in our data. We could
then try to map this out in a causal diagram which could be
extended to include aspects of the data collection such as quality
control, selection criteria, labelling, and any other factors that
may impact the variation of the data. All this may be done
even before any actual data has been collected, as it may inform
our planning (e.g., is it sufficient to collect data from a single
site, is our study population representative, etc.). The causal
relationships in the data may further dictate what types of
machine learning methodology we may want to employ. Some
learning strategies, such as semi-supervised learning, may be
non-optimal in certain settings. So even if we opt for purely
associative approaches for the data analysis, such as deep con-
volutional neural networks, a causal pre-analysis of our study
setting may be helpful to avoid common pitfalls in machine
learning.

M.M.: As I said, I usually work with datasets that have been
collected through mobile applications or extracted using APIs.
When you design (mobile) applications for data collection you
tend to collect as much data as possible in order to consider all
possible confounders. In this case, as researchers we have control
of the data collection process and, therefore, a well-designed
study allows us to apply causal analysis techniques with very few
limitations. However, the practice might be rather different from
the theory. In fact, it is often the case that it is not possible to
collect all the required information for an “ideal study”, usually
for privacy reasons. Let us consider for example the mobile
applications used for alerting users for potential exposure to
covid-19, i.e,, the so-called exposure notification apps. In theory,
these apps could have been designed to collect many variables of
interest for understanding the spreading of the virus in popula-
tions, such as, for example, the network of contacts of infected
individuals, their timing and the location where they took place,
etc. In certain countries, this is the case, but causal analysis is not
possible with apps based for example on the Apple/Google
Exposure Notification API (actually, given the API limitations by
design, correlation analysis is also hard). This is an extreme case,
but in many situations, causal analysis is not possible since key
variables cannot be monitored because of legal and/or ethical
considerations.

Another interesting aspect is related to the selection of the
participants. In fact, depending on the way a mobile application is
distributed, researchers might not have full control on the
selection of participants. A typical example is the case of appli-
cations that are advertised broadly and distributed through app
markets, such as the Apple App Store and Google Play Store. In
these cases, experimenters do not have direct control on the
selection of the participants. In theory, it would be necessary to
control for variables such as demographics, but this is not always
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possible, because this information might not be available. For
example, if the ethical review of a study does not allow for the
collection of demographic information, this cannot be inferred
through the app stores, since they do not record this type of
information.

Another typical situation is the case of causal inference applied to
“big data(sets)”, such as those extracted by means of social media
APIs. In these situations, again, the actual composition of the set of
participants” is not directly available, since they are a sort of
“exhaust”, as some people say, which comes from the normal use of
the platform, ie., they are secondary data. In these situations,
caution in drawing conclusions in terms of causality (but also in
terms of correlation) is essential. At the same time, luckily enough,
we have a plethora of powerful techniques for dealing with these
datasets and extracting causal relationships if present.

J.R.: Causal diagnostic algorithms use explicit causal models
to make inferences, and the first and most challenging step is
learning a pathophysiological model. These are typically large
graphical models representing symptoms, diseases and risk
factors, situated in a directed acyclic graph (DAG) which
encodes their causal relations. The DAG is constructed using a
knowledge graph derived from medical literature and expert
knowledge, or it can be learned from health records and epi-
demiological data using causal discovery algorithms. The model
parameters are then learned using a combination of expert eli-
citation, electronic health records and epidemiological data,
typically making assumptions of parameter modularity and
independence to expedite learning and improve interpretability.
Diagnosis is a dynamic and investigative process involving many
sub-tasks such as evidence gathering, hypothesis generation, and
deductive reasoning. So the next step is to devise inference
algorithms for each of these tasks. For example, associative
inference can be used for evidence gathering, while causal
inference can be used to weight diagnostic hypotheses. Finally,
the complete system has to be validated and extensively tested
for accuracy and safety.

C.U.: My group has worked extensively on the development of
a theoretical and algorithmic framework for causal structure
discovery, i.e. the identification of causal relationships, from a
mix of observational and perturbational data. An example of how
such methods can be applied to pinpoint candidate drug targets
has been discussed above in the context of COVID-19.

Given the urgency in the COVID-19 pandemic, it is of parti-
cular interest to identify drugs that are already FDA approved
and are also effective against COVID-19 (this problem is known
as drug repurposing). Given large-scale drug screens performed
for other diseases (such as CMAP described above, which con-
centrates on cancer cell lines), the problem then becomes to
transport the effect of a drug from one disease context to another
and predict the effect of drugs on SARS-CoV-2 infected cells
knowing their effect on cancer cell lines. This problem is known
as causal transportability or synthetic controls/interventions in
the causality and policy evaluation literature. Alternatively, this
problem can be seen as a style transfer problem in machine
learning, where the style is the effect of a drug and the goal is to
transfer it from one disease context to another. Autoencoders and
generative adversarial networks have been very successfully
applied for style transfer in computer vision applications by
viewing the style as a vector in the latent space that can be
appended to an image to change its style. Such an approach for
drug imputation can only work if the effect of a drug is aligned in
the latent space across disease contexts. We showed in recent
work that over-parameterized autoencoders, i.e. autoencoders
where the latent space dimension is larger than the input
dimension, can be used to enhance alignment and transport the
effect of a drug from one disease context to another. This

approach may be used to efficiently screen a large number of
drugs virtually and then perform experiments only on a subset of
candidate drugs in the new disease context.

New guidelines for Al-based clinical trials have been pub-
lished recently. How do you think causality should fit in there?

B.G.: Causal reasoning requires us to be explicit about our
assumptions. For example, we can present the assumed data
generating process in form of a causal diagram which is intuitive
and easy to interpret. This also means that our assumptions are
made more transparent and can be scrutinized by others. In this
way, the toolbox of causality can support better reporting of Al-
based studies and help with the identification of potential issues
such as dataset shift, sample selection and other biases.

M.M.: As a computer scientist, first, I am always careful in
using the word Artificial Intelligence (AI). For me, Al has a
specific meaning, which is related to the efforts in building arti-
ficial systems that can complete tasks that require human intel-
ligence. For this reason, I would prefer the term ML-based clinical
trials instead.

In general, I would welcome the adoption of the recent
developments in causal inference, in particular those introduced
by the machine learning community in the past decade. I would
say that the adoption is slow, but it is definitely happening.
Another fundamental aspect in this context is the interpretability
of the algorithms used for designing the trials and analysing the
outcomes. This is an essential area of research also for increasing
the confidence of researchers and practitioners in these areas. I
also personally see a need for tools for guiding causal reasoning
and supporting reproducibility of the studies based on the results
of these trials.

J.R.: The SPIRIT-AI and CONSORT-AI guidelines extend
existing guidelines for randomised control trials to deal with Al
based interventions. Similar guidelines also exist for the design
and reporting of observational causal inference studies, and
extending these seems like a natural next step given the growing
importance of causal inference in developing and monitoring Al
based digital health products. For example, many causal inference
studies involve counterfactual queries, and there are no coun-
terfactual data points that can be used to validate the accuracy of
these predictions. So it is important to ensure high-quality
reporting on the modelling assumptions used to make these
causal inferences, as well as reporting sensitivity analyses, which
are used to determine the potential effect of unobserved con-
founding on these studies.

C.U.: Exciting times lie ahead for the use of Al-based methods
in clinical trials. Causality is an important tool in every aspect of
drug development and clinical trials, from the identification of
targets (see above), to toxicity estimation and dose estimation (for
example using causal structure discovery or causal transport
methods discussed above), to the selection of patients for the trial.
As discussed above, machine learning based algorithms in clinical
applications can cause harm, in particular when they are trained
on datasets that are not representative of the one they are applied
to. An important concern for the use of Al-based methods in
clinical trials is that they may perpetuate and exacerbate under-
lying biases and health disparities. In particular, algorithms which
at first glance seem agnostic to group membership, may exhibit
disparate impact. Causality has recently emerged as a powerful
tool to investigate such questions of algorithmic fairness. In
particular, counterfactual reasoning can be used to investigate
whether the outcome would have been the same for an individual
if (s)he would have belonged to a marginalized group. Thus,
causality could become an important tool to investigate fairness
in clinical trials, select the right patients for the trial, and thereby
help lessen health disparities.
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